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A Fault Diagnosis Method for
Industrial Gas Turbines Using
Bayesian Data Analysis
This paper presents an offline fault diagnosis method for industrial gas turbines in a
steady-state. Fault diagnosis plays an important role in the efforts for gas turbine owners
to shift from preventive maintenance to predictive maintenance, and consequently to
reduce the maintenance cost. Ever since its birth, numerous techniques have been re-
searched in this field, yet none of them is completely better than the others and perfectly
solves the problem. Fault diagnosis is a challenging problem because there are numerous
fault situations that can possibly happen to a gas turbine, and multiple faults may occur
in multiple components of the gas turbine simultaneously. An algorithm tailored to one
fault situation may not perform well in other fault situations. A general algorithm that
performs well in overall fault situations tends to compromise its accuracy in the indi-
vidual fault situation. In addition to the issue of generality versus accuracy, another
challenging aspect of fault diagnosis is that, data used in diagnosis contain errors. The
data is comprised of measurements obtained from gas turbines. Measurements contain
random errors and often systematic errors like sensor biases as well. In this paper, to
maintain the generality and the accuracy together, multiple Bayesian models tailored to
various fault situations are implemented in one hierarchical model. The fault situations
include single faults occurring in a component, and multiple faults occurring in more
than one component. In addition to faults occurring in the components of a gas turbine,
sensor biases are explicitly included in the multiple models so that the magnitude of a
bias, if any, can be estimated as well. Results from these multiple Bayesian models are
averaged according to how much each model is supported by data. Gibbs sampling is
used for the calculation of the Bayesian models. The presented method is applied to fault
diagnosis of a gas turbine that is equipped with a faulty compressor and a biased fuel
flow sensor. The presented method successfully diagnoses the magnitudes of the compres-
sor fault and the fuel flow sensor bias with limited amount of data. It is also shown that
averaging multiple models gives rise to more accurate and less uncertain results than
using a single general model. By averaging multiple models, based on various fault
situations, fault diagnosis can be general yet accurate. �DOI: 10.1115/1.3204508�
Introduction
As the power generation market becomes competitive, power

lant owners strive to make more profit with lesser cost of own-
rship. Maintenance cost accounts for a large part of the cost of
wnership. The current maintenance strategy for most machines is
reventive in a sense that maintenance actions are performed
long schedules suggested by manufacturers. These schedules are
ade by the manufacturers, based on historical data, empirical

nowledge, and tests performed along design processes. The
chedules have little to do with the actual condition of the ma-
hine subject to the scheduled maintenance actions. To reduce the
aintenance cost, it is desirable for the power plant owners to

erform maintenance actions when they are actually needed. This
esire has led to a new maintenance strategy called predictive
aintenance, with which maintenance experts assess the condition

f machines at the current time, predict the failure time in the
uture, and decide the best maintenance action. The first two steps
re called fault diagnosis and prognosis, respectively. For the pre-
ictive maintenance to be successful, it is important for a diagno-
is to be accurate because not only a wrong diagnosis results in
nnecessary maintenance and consequently high maintenance cost
ut also diagnosis results are used in prognosis and other tasks
ownstream.

1Corresponding author.
Manuscript received March 4, 2009; final manuscript received June 2, 2009;
ublished online January 15, 2010. Review conducted by Allan Volponi.
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Fault diagnosis and prognosis are not new concepts in the gas
turbine industry for power plants. A gas turbine is a crucial com-
ponent of conventional combined cycle power plants so it has
been of great interest for power plant operators to estimate the
condition of a gas turbine from tests or operation data. The con-
dition of a gas turbine is quantitatively represented by, commonly
called, health parameters, which scales gas turbine performance
relative to a baseline, e.g., the performance of a brand new gas
turbine. Health parameters are immeasurable and can only be es-
timated from measured data. Estimation of the health parameters
from test data is often referred to as gas path analysis �GPA�,
which was pioneered by Urban �1�. The method of least-squares
�2� and Kalman filters �3,4� are widely used for GPA. More re-
cently, several artificial intelligence techniques such as neural net-
works �5�, fuzzy logic �6�, and Bayesian networks �7� were re-
searched to be applied to GPA.

No matter which technique is used, there is a common difficulty
in applying these techniques to an assessment of the condition of
a gas turbine. When a health parameter estimator is built using
one of these techniques, the estimator should be general enough to
be applicable to various fault situations. However, a general esti-
mator is not tailored to each fault situation so that its result may
not be as accurate as the tailored ones. A too general estimator
gives rise to the so called smearing effect �8� in its results. In a
fault situation, the health parameter estimator should pinpoint the
health parameters associated with the fault. The smearing effects
refer to the spread of inaccuracy over several irrelevant health

parameters.
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The problem of choosing the generality of the estimator is an
xample of the concept called model comparison or model selec-
ion �9�, which is well known in statistics. It is often found that,
nstead of selecting the single best model, combining multiple

odels gives rise to better results. In the field of fault diagnosis of
as turbines, there have been quite a few attempts to select the
est model among many: the fault logic �2�, a combinatorial ap-
roach �10�, and a bank of Kalman filters �11�. However, there has
een little effort to use the concept of model combination in this
eld.
Motivated by the potential of model combination, and inspired

y several Bayesian approaches for selecting variables in regres-
ion analysis �12,13�, the authors proposed the use of multiple
ayesian models using Bayesian model averaging �BMA� for

ault diagnosis of gas turbines in a steady-state. The proposed
ethod is intended for offline diagnoses. The inputs to the pro-

osed method are sensor measurements obtained from a gas tur-
ine. These measurements always contain random errors. In addi-
ion, biases can be present in measurements due to incorrect
alibration or sensor faults. The random noises and biases in the
easured data give rise to inaccuracy in estimates of health pa-

ameters. To avoid this inaccuracy, the measured data should be
alidated before they are used.

One of the simplest ways to remove random errors is to average
ultiple data points collected over a certain time period. Unlike

andom errors, biases are constantly present in multiple data
oints so that it is impossible to eliminate them by a simple ma-
ipulation of data. Because of its constant presence, biases can be
isinterpreted as an actual change in the condition of the gas

urbine or a fault situation. Unless the condition of the gas turbine
s known, it is difficult to decouple biases from measured data
14�. Therefore, while the condition of the gas turbine is assessed,
ensor biases must be considered as well. The Bayesian models
sed in this work explicitly include sensor biases, health param-
ters, and sensor measurements. Section 2 explains how multiple
ayesian models are constructed for various fault situations, and
ow their results are averaged. It is followed by the results from
n industrial gas turbine fault diagnosis case.

Methodology

2.1 A Bayesian Model. Let X be a vector of health param-
ters, and Y as a vector of measurements. At a steady operating
ondition, the health parameters and measurements have a func-
ional relationship f

Y = f�X� + � �1�

here � is the random error. The relationship f can be linearized
t the steady condition and written as

Y = AX + � �2�

here A is the coefficient matrix. Now � includes not only the
andom noise but the linearization error as well. When the mea-
urement vector Y is subject to sensor bias B, Eq. �2� can be
ritten as follows:

Y = AX + B + � �3�

Let us assume that the conditional probability of Y, given X and
, p�Y �X ,B�, follows a multivariate normal distribution N�� ,��,
here � is the mean vector, and � is the precision matrix. Let us

lso assume that the mean of � is zero. The mean vector � is
ritten as

� = AX + B �4�

ith limited data and knowledge, the precision matrix � is often
ard to define. Thus, � is considered as a variable that is to be
nferred from the data. A Wishart distribution is used for the prior

istribution of � as
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� � W��,�� �5�

where � is the scale matrix, and � is the degree of freedom. A
Wishart distribution is a conjugate prior of the precision matrix of
a multivariate normal distribution �15�. The elements of � are
adjusted to make the Wishart distribution disperse.

Health parameter Xi is assumed to be any value in the range of
interest. It is also assumed that no particular value is more likely
than others in the range. This notion can be expressed with a
uniform distribution U�a ,b�, where a and b are the lower and
upper boundaries, respectively. With the same reason, the bias B is
assumed to follow a uniform distribution as well. In reality, for a
brand new machine, health parameters are likely to be the design
condition, and even for an aged machine, a large deviation from
the design condition may rarely happen. However, prior probabil-
ity distributions, based on this conservative view, will affect the
sensitivity and accuracy of a fault diagnosis algorithm.

2.2 Building Multiple Models. Let � be a set of X and B,
�= �X1 ,X2 , . . . ,Xnx ,B1 ,B2 , . . . ,Bnb�, where nx and nb are the
numbers of health parameters and sensor biases, respectively. The
most general linear model one can build using any elements of �
is the one with all the health parameters and biases. Or, one can
use a subset of the health parameters and biases such that the
resulting model is tailored to a fault situation. The total number of
possible subsets is 2n, where n is the total number of health pa-
rameters and sensor biases. Each model is assigned to a state of
model variable M. In reality, a situation with several faults may be
less likely to happen than a situation with single or a few faults.
However, it is objective to assign an equal probability to each
model unless there is a sufficient reason to favor one model over
another. Thus, a uniform categorical distribution with 2n catego-
ries is assigned to the model variable M. The probability that the
model variable M is a particular model m is

p�m� =
1

2n �6�

As the model variable changes from one model to another,
some variables are added in, and others are removed from the
model. To implement this inclusion and exclusion of variables in a
model numerically, an auxiliary variable vector � is introduced,
and its elements are connected to each element of �. � controls a
mixture of two uniform distributions shown in Fig. 1, and assigns
the mixture to � as follows:

��� � �1 − ��U��0 − �,�0 + �� + �U�a,b� �7�

where �0 is the prescribed value, and � is a small number. Each
element of � is a binary variable with two states: zero and one.
When � is zero, the uniform prior of the corresponding � is con-
centrated at the prescribed value �0. On the other hand, when � is

Fig. 1 “Spike and slab” prior
one, the uniform prior covers the range of interest �a ,b�. Thus,
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ny values in this range are equally probable. This emulates the
nclusion and exclusion of � connected to �. Uniform distributions
an be replaced with other distributions such as normal distribu-
ions. The current method is still valid with other distributions.

All 2n models can be shown in one graphical form, as in Fig. 2.
t should be noted that the relationship between M and � is deter-
inistic; the form of each model is already known.

2.3 Bayesian Model Averaging. Once the measurement vec-
or Y is obtained from a gas turbine, it can be used for calculating
he posterior distributions of other variables such as M and �. The
osterior of �, p�� �Y�, can be calculated from

p���Y� = 	
m�M

p���m,Y�p�m�Y� 	 	
m�M

p�Y��,m�p���m�p�m�

�8�

quation �8� is merely a weighted average of p�� �m ,Y�, which
esulted from each model. The posterior of each model p�m �Y� is
he weighting factor. All models are averaged through Eq. �8�.

The model posterior p�m �Y� can be calculated from

p�m�Y� 	 p�Y�m�p�m� 	




p�Y��,m�p���m�d� �9�

quation �9� involves a multidimensional integration of a possibly
ultimodal function. Because the integrand is not analytically de-

ivable, the posterior should be calculated approximately, for ex-
mple, using a Markov chain Monte Carlo �MCMC� method.
CMC methods are a class of algorithms for sampling from prob-

bility distributions. Among the MCMC methods, the Gibbs sam-
ler is most widely used for Bayesian data analysis. The general
ormulation of the Gibbs sampler is as follows. Consider a vector
f n random variables �, another random variable Y, and the con-
itional density of i-th element of � given Y,
��i ��1 , . . . ,�i−1 ,�i+1 , . . . ,�n ,Y�. The Gibbs sampler sequentially
amples from the conditional densities �16�

�1
j+1 � p��1��2

j ,�3
j , . . . ,�n

j ,Y�

�2
j+1 � p��2��1

j+1,�3
j , . . . ,�n

j ,Y�
�10�

]

�n
j+1 � p��n��1

j+1,�2
j+1, . . . ,�n−1

j+1 ,Y�

he symbol “�” means that �i
j follows the probability density p.

he Gibbs sampler starts with an arbitrary initial �1, and randomly
hooses �1

2 from the conditional density in the first equation. The
2

Fig. 2 Graphical model of the current formulation
hosen value for �1 is used in the rest of the equations at j=1.
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Throughout the sampling, Y is fixed. For large enough j, �i
j is

effectively a sample point from its posterior distribution p��i �Y�.
The number of required sampling varies with problems. For this
paper, 3000 sampling are performed with an arbitrary initial point,
and the sampling is repeated with another initial point. The con-
ditional densities for the presented method are given in Fig. 2
along with the graph. WinBUGS �17�, a public domain Gibbs
sampling software, is used in this paper.

3 Test Case: An Industrial Gas Turbine
As a proof of concept, the presented method is applied to the

fault diagnosis of a GE 7FA+e single shaft gas turbine. Four
health parameters are to be estimated from six measurements,
which are listed in Table 1. In addition to the health parameters,
six biases, one for each measurement, are to be estimated as well.
Typically, the bias in a sensor measurement is independent to
other sensor measurements. However, the biases in the compres-
sor discharge pressure and exhaust gas temperature measurements
�BCDP and BTEX� affect all measurements because they are used
for controlling the gas turbine. A Bayesian model consisting of all
the health parameters, sensor biases, and measurements is shown
in Fig. 3. This graph is corresponding to the link between � and Y
in Fig. 2.

The strength of each link in Fig. 3 is stored in the coefficient
matrix A and in the coefficients of the sensor bias terms in Eq. �3�.
They can be determined by performing a regression analysis on
available data. For this test case, a design of experiments �DOE�
using thermodynamic analyses are performed. The Gas Turbine
Performance �GTP� software �18�, developed at GE, is used for
simulating the gas turbine. The ranges of the health parameters
and biases used in the DOE are shown in Table 2. A health pa-
rameter of 1 means that the performance of the corresponding
component is same as the performance at the design condition. All
sensor biases are shown in percentage of the values at the design
condition except for the temperature sensor biases, which are in
deviation from the design condition.

The developed method is applied to a fictional situation, as
described in the following. The GE 7FA+e gas turbine experi-
ences a fault or multiple faults so that the performance of the
compressor is deteriorated. Both the compressor efficiency and
flow parameters are 0.96. In addition to the compressor deteriora-
tion, the fuel flow sensor has 5% bias from the design condition

Table 1 Health parameters and measurements

Health parameters Measurements

Compressor efficiency �XCE� Generator output �YDW�
Compressor flow �XCF� Compressor discharge temperature �YCDT�
Turbine flow �XTF� Compressor discharge pressure �YCDP�
Turbine efficiency �XTE� Exhaust gas temperature �YTEX�

Fuel flow �YWF�
Air flow �YWA�

Fig. 3 Network consisting of the health parameters, sensor

biases, and measurements

APRIL 2010, Vol. 132 / 041602-3
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alue. All other components remain at the design condition. The
easurements in this situation are simulated using GTP. To emu-

ate random noises in real measurements, Gaussian random num-
ers with zero mean are added to the GTP output. The variances
f the random noises of the measurements are obtained from the
est data provided by GE Energy, and they are not listed here due
o their proprietary nature.
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Table 2 Ranges of the health parameters and biases

ariables Ranges

CF �0.92, 1.02�
CE �0.92, 1.02�
TF �0.96, 1.02�
TE �0.95, 1.02�
CDP ��2.5%, 2.5%�
TEX �−44°F, 44°F�
DW ��3%, 3%�
CDT �−24°F, 24°F�
WF ��10%, 10%�
WA ��8%, 8%�
Fig. 5 Gibbs samples in the XCE-BCDT coordinate
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The data fed into the method is a two-dimensional matrix, each
row of which is a vector of six measurements obtained at different
discrete instants of time. In reality, each data point is often a time
average of a short period, and the interval between these data
points can be as short as a few minutes. However, the time inter-
val is irrelevant in this paper because of the steady-state assump-
tion.
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Fig. 6 Posteriors of the compressor flow parameter and the
fuel flow sensor bias „vertical lines: true values…
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A solution from the method varies with the number of data
oints. When the number of data points is small, the prior distri-
utions of the variables will dominate the solution. As the number
f data points increases, the effect of the prior distributions will be
iminished. To find a proper number of data points, the method is
pplied to the test case with various numbers of data points, and
ig. 4 shows the posterior of the compressor efficiency parameter.
he posterior of the compressor efficiency parameter is multimo-
al: one mode near 0.96, which is the true value, and the other
ear 1. The latter is due to the models that do not include the
ompressor efficiency parameter. When a health parameter is not
ncluded in a model, the health parameter is fixed at 1 as default,
hich is the design condition. As the number of data points in-

reases, the density near 1 decreases, and the decreased amount
hifts near the true value. After 30 data points, the posterior
hanges a little. The results shown hereafter are from the case of
he 30 data points. The computational time is typically within five

inutes on a PC with Intel Core2 2 GHz CPU and 2 GB of RAM.
This multimodality is due to the correlation between XCE and

CDT, given the measurements for this test case. The correlation
an be seen once the 6000 Gibbs samples are plotted in the
CE-BCDT coordinate, as shown in Fig. 5. The horizontal and ver-

ical clouds at XCE=0.96 and 1 are from the models in which BCDT
nd XCE, respectively, are not included. These two clouds on top
f the other points make the probability density of XCE peaked at
.96 and 1. It should be noted that correlations between the vari-
bles vary with the coefficient matrix and measurements.

Figure 6 shows the posteriors of the compressor flow parameter
nd the fuel flow sensor bias. Unlike the compressor efficiency
arameter, both the compressor flow parameter and the fuel flow
ias are unimodal because these two do not have any significant
orrelation with other variables. Each posterior is peaked near the
rue value. Thus, an accurate point estimate such as the maximum
posterior �MAP� estimate can be made from these posteriors. All

he variables not presented here also have posteriors peaked at the
rue values.

The results so far are an average of results from multiple mod-
ls. Because the total number of health parameters and sensor
iases is ten, 210=1024 models are considered for this analysis.
ore than half of these 1024 models have a nearly zero posterior

robability, as shown in Fig. 7. These models with a nearly zero
osterior probability are barely supported by the data, and they
ontribute little to the posterior of � in Eq. �8�.

Table 3 lists the ten models most supported by the data. All ten
odels commonly contain the compressor efficiency, flow param-

ters, and the fuel flow sensor bias. Although the developed
ethod finds the model with only the necessary variables, the
ost probable in this test case, in general, it is possible for other

imilar models to have higher posterior probability due to the
imited amount of data and the noise in data. In fact, the top
anked model is the model tailored to the fault situation in this test

Table 3 Models with the ten

robability
Cumulative
probability XCF XCE XTF X

8.52 8.52 � �
4.94 13.46 � �
4.54 18.01 � �
3.43 21.44 � �
3.40 24.84 � �
3.08 27.92 � �
2.93 30.86 � �
2.87 33.72 � �
2.36 36.08 � �
2.05 38.13 � �
ase. It should perform the best among the 1024 models in this
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test case. The most general model among the 1024 models is the
one with all the health parameters and biases as its variables.
Hereafter, the tailored model and the most general models will be
referred to as the true and full models, respectively. Intuitively, the
averaged model is expected to perform in between the two mod-
els. Figure 8 shows the posteriors of the compressor efficiency
and flow parameters from the true, full, and Bayesian averaged
models. The true model results in the most peaked and closest
posteriors to the true value. In contrast, the full model results in
the disperse posteriors for both parameters, which are not much
different from their uniform prior distributions. It is hard to draw

ghest posterior probabilities
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conclusion or make an accurate point estimate from these dis-
erse distributions. Last, but not the least, the averaged model
pproximates the true model fairly well, and the posteriors are
eaked enough to make a meaningful point estimate.

Conclusion
This paper presents an offline fault diagnosis method for indus-

rial gas turbines in a steady-state. Multiple Bayesian models tai-
ored to various fault situations are implemented in one hierarchi-
al model. The fault situations include single faults occurring in a
omponent, and multiple faults occurring in more than one com-
onent. In addition to faults occurring in the components of a gas
urbine, sensor biases are explicitly included in the Bayesian mod-
ls. Results from these multiple Bayesian models are averaged
sing the posterior probability of each model as a weighting fac-
or. The Gibbs sampling is used to calculate approximate posterior
robability distributions.

The presented method is applied to fault diagnosis of a GE
FA+e single shaft gas turbine that is equipped with the faulty
ompressor and the biased fuel flow sensor. The presented method
uccessfully detects and identifies the magnitudes of the compres-
or fault and the fuel flow sensor bias with a limited amount of
ata. It is also shown that Bayesian model averaging gives rise to
ore accurate and less uncertain results than a single complex
odel.
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omenclature
Y � vector of sensor measurements
X � vector of health parameters
B � vector of sensor biases
� � random noise with zero mean

W�� ,�� � a Wishart distribution with the parameters �
and �

U�a ,b� � a uniform distribution with the range between
a and b

N�� ,�� � a normal distribution with the mean vector �

and the precision matrix �

41602-6 / Vol. 132, APRIL 2010
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M � model variable
m � an instance of the model variable
� � a set of the health parameters and sensor

biases
� � vector of binary variables controlling the inclu-

sion or exclusion of variables
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